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Abstract: Enantiopure turbo chirality in small organic molecules, without other chiral
elements, is a fascinating topic that has garnered significant interest within the chemical
and materials science community. However, further research into and application of this
concept have been severely limited by the lack of effective asymmetric tools. To date, only a
few enantiomers of turbo chiral targets have been isolated, and these were obtained through
physical separation using chiral HPLC, typically on milligram scales. In this work, we report
the first asymmetric approach to enantiopure turbo chirality in the absence of other chiral
elements such as central and axial chirality. This is demonstrated by assembling aromatic
phosphine oxides, where three propeller-like groups are anchored to a P(O) center via
three axes. Asymmetric induction was successfully carried out using a chiral sulfonimine
auxiliary, with absolute configurations and conformations unambiguously determined
by X-ray diffraction analysis. The resulting turbo frameworks exhibit three propellers
arranged in either a clockwise (P,P,P) or counterclockwise (M,M,M) configuration. In these
arrangements, the bulkier sides of the aromatic rings are oriented toward the oxygen atom
of the P=O bond rather than in the opposite direction. Additionally, the orientational
configuration is controlled by the sulfonimine auxiliary as well, showing that one of the
Naph rings is pushed away from the auxiliary group (-CH2-NHSO2-tBu) of the phenyl
ring. Computational studies were conducted on relative energies for the rotational barriers
of a turbo target along the P=O axis and the transition pathway between two enantiomers,
meeting our expectations. This work is expected to have a significant impact on the fields
of chemistry, biomedicine, and materials science in the future.

Keywords: asymmetric synthesis; enantiopure turbo chirality; propeller chirality; phos-
phine oxide; propeller blades

1. Introduction
The significance of molecular chirality has been widely recognized since its discovery

by Pasteur over a century ago [1]. Interest in chirality research intensified after the first
optical amino acid, tyrosine, was identified [2,3], followed by the characterization of right-
and left-handed α-helices in proteins [4,5] and the double helix structure of DNA [5,6].
These early breakthroughs revolutionized the fields of biology, medicine, chemistry, and
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materials science [7–14]. In chemical sciences, substantial progress has been made in con-
trolling molecular chirality [15–32], with several Nobel Prizes awarded for advancements
in this area [33,34].

Molecular chirality in chemistry is categorized in various ways, including cen-
tral [35–60], axial [61–81], spiral [15,82,83], sandwich (both metallic [84,85] and organo [86–91]),
turbo or propeller chirality [92], and orientational chirality [93–96] in small molecules.
Other classifications include multilayer chirality (rigid helical [11,97] and flexible fold-
ing [98,99]), as well as topological and inherent chirality in macromolecules and poly-
mers [100,101]. Recently, our lab has focused on establishing new chirality elements and
advancing asymmetric control strategies. For instance, we have uniquely characterized
orientational chirality, defined by C(sp2)-C(sp3) or C(sp)-C(sp3) axes anchored by chiral
centers and remote blockers [93–96]. The chiral model for this element shows only three
major energy barriers, in contrast to the six barriers typically observed in classic Felkin–Ahn
or Cram models. Additionally, we developed a multilayer folding chirality based on a P=O
scaffold, which consists of three parallel aromatic rings (top, middle, and bottom layers).
This folding chiral framework can be controlled via asymmetric catalysis to facilitate single
C-C bond formation, using newly designed chiral phosphine amide catalysts [86]. An X-ray
diffraction analysis of the P=O-based multilayer framework confirmed the presence of a
pro-phosphorus chiral center and a turbo or propeller chiral pattern (Figure 1). The concur-
rent aromatic–aromatic interactions led to the differentiation of the two phenyl groups on
the P=O unit and induced the turbo chiral arrangement across the three aromatic rings.
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Although the new chiral elements described above exhibit either center or planar chi-
rality, they inspired us to pursue enantiopure turbo chirality devoid of other chiral ele-
ments. A review of the literature revealed that only a few enantiomers of turbo chiral 
compounds have been isolated, primarily through physical separation using chiral HPLC, 
typically on milligram scales [102,103]. The further exploration and application of this in-
triguing form of chirality have been significantly constrained by the lack of effective asym-
metric synthetic methods. To the best of our knowledge, no reports have yet described the 
asymmetric synthesis of turbo chiral targets in the absence of other chiral elements [104–
109]. To address this challenge, we chose phosphine oxides as our starting point, based on 
our experience with their synthesis and their ability to form high-quality crystals suitable 
for X-ray diffraction analysis. In this report, we present our preliminary findings on the 
first synthesis of enantiopure turbo chiral frameworks, as illustrated in Figure 2. 
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Although the new chiral elements described above exhibit either center or planar chi-
rality, they inspired us to pursue enantiopure turbo chirality devoid of other chiral elements.
A review of the literature revealed that only a few enantiomers of turbo chiral compounds
have been isolated, primarily through physical separation using chiral HPLC, typically
on milligram scales [102,103]. The further exploration and application of this intriguing
form of chirality have been significantly constrained by the lack of effective asymmetric
synthetic methods. To the best of our knowledge, no reports have yet described the asym-
metric synthesis of turbo chiral targets in the absence of other chiral elements [104–109].
To address this challenge, we chose phosphine oxides as our starting point, based on our
experience with their synthesis and their ability to form high-quality crystals suitable for
X-ray diffraction analysis. In this report, we present our preliminary findings on the first
synthesis of enantiopure turbo chiral frameworks, as illustrated in Figure 2.
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Figure 2. Enantiopure turbo chiral targets. 

2. Results and Discussion 
The design and synthesis in this work consist of assembling the turbo target of N-(2-

(bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfona-
mide. Initially, we focused on the 1-substituted-(2,7-dimethoxynaphthalene) scaffold, 
widely used for axial chirality control [110–113] due to the steric interactions between the 
hydrogen and methoxy groups at positions 1 and 2 of the naphthalene ring. Introducing 
two such groups would lead to bulkier stereochemical surroundings which benefit the 
stability of atropoisomeric chiral turbo targets. The turbo design with the N-(2-benzyl)-2-
methylpropane-2-sulfonamide group was based on three key factors: the non-symmet-
rical structure, the ease of attaching chiral auxiliaries, and the potential for forming P-
C(sp2) bonds under well-established catalytic conditions. In regard to auxiliary selection, 
the chiral sulfinyl auxiliary was chosen since it has been successfully utilized for control-
ling our orientational chirality [114,115], and it is readily oxidized to a -SO2tBu function-
ality to eliminate chiral centers in the final step. The synthesis involved two main building 
blocks: (R)- or (S)-N-(2-bromobenzyl)-2-methylpropane-2-sulfinamide (1) and bis(2,7-di-
methoxynaphthalen-1-yl)phosphine oxide (2). 

The synthesis of building block 1a started with the treatment of a commercial starting 
material, 2-bromobenzaldehyde, with tert-butanesulfinamide in the presence of titanium 
tetraethoxide to give (R,E)-N-(2-bromobenzylidene)-2-methylpropane-2-sulfinamide (S1, 
92%) [69,70]. This chiral imine precursor was reduced to (R)- or (S)-N-(2-bromobenzyl)-2-
methylpropane-2-sulfinamide by using LiAlH4 (0.5 equiv) in THF at 0 °C to r.t. for 10 
minutes in a chemical yield of 88%. In this step, the crude chiral imine precursor was di-
rectly subjected to the reduction reaction without purification. The synthesis of the second 
building block started with the bromination reaction of 2,7-dihydroxynaphthalene with 
NBS in a yield of 93%. The resulting 1-bromonaphthalene-2,7-diol (S2) was subjected to 
demethylation with methyl iodide (for others, alkyl bromides were employed) in the pres-
ence of potassium carbonate to give 1-bromo-2,7-dimethoxynaphthalene (S3) in a 94% 
yield. 1-Bromo-2,7-dimethoxynaphthalene was then treated with magnesium turnings to 
afford the corresponding Grignard reagent, which was then reacted with diethyl phos-
phite to obtain bis(2,7-dimethoxynaphthalen-1-yl)phosphine oxide 2a. Under a catalytic 
system involving Pd(OAc)2 (10 mol%), dppp (20 mol%), and Cs2CO3 (2.0 equiv) in toluene 
solution protected by argon gas, the reaction was completed at 120 °C in 16 hours to give 
(R)-N-(2-(bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sul-
finamide (3a) in a complex mixture which is extremely difficult to purify. This crude prod-
uct was directly subjected to oxidation with m-CPBA in THF to afford the final chiral turbo 
product, N-(2-(bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-
2-sulfonamide (4a), in a chemical yield of 80% for these two steps (an overall yield of 44% 
from 2a) (Schemes 1–3). 
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2. Results and Discussion
The design and synthesis in this work consist of assembling the turbo target of N-(2-

(bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide.
Initially, we focused on the 1-substituted-(2,7-dimethoxynaphthalene) scaffold, widely
used for axial chirality control [110–113] due to the steric interactions between the hy-
drogen and methoxy groups at positions 1 and 2 of the naphthalene ring. Introducing
two such groups would lead to bulkier stereochemical surroundings which benefit the
stability of atropoisomeric chiral turbo targets. The turbo design with the N-(2-benzyl)-2-
methylpropane-2-sulfonamide group was based on three key factors: the non-symmetrical
structure, the ease of attaching chiral auxiliaries, and the potential for forming P-C(sp2)
bonds under well-established catalytic conditions. In regard to auxiliary selection, the chiral
sulfinyl auxiliary was chosen since it has been successfully utilized for controlling our orien-
tational chirality [114,115], and it is readily oxidized to a -SO2tBu functionality to eliminate
chiral centers in the final step. The synthesis involved two main building blocks: (R)- or (S)-
N-(2-bromobenzyl)-2-methylpropane-2-sulfinamide (1) and bis(2,7-dimethoxynaphthalen-
1-yl)phosphine oxide (2).

The synthesis of building block 1a started with the treatment of a commercial starting
material, 2-bromobenzaldehyde, with tert-butanesulfinamide in the presence of titanium
tetraethoxide to give (R,E)-N-(2-bromobenzylidene)-2-methylpropane-2-sulfinamide (S1,
92%) [69,70]. This chiral imine precursor was reduced to (R)- or (S)-N-(2-bromobenzyl)-
2-methylpropane-2-sulfinamide by using LiAlH4 (0.5 equiv) in THF at 0 ◦C to r.t. for
10 min in a chemical yield of 88%. In this step, the crude chiral imine precursor was
directly subjected to the reduction reaction without purification. The synthesis of the
second building block started with the bromination reaction of 2,7-dihydroxynaphthalene
with NBS in a yield of 93%. The resulting 1-bromonaphthalene-2,7-diol (S2) was sub-
jected to demethylation with methyl iodide (for others, alkyl bromides were employed)
in the presence of potassium carbonate to give 1-bromo-2,7-dimethoxynaphthalene (S3)
in a 94% yield. 1-Bromo-2,7-dimethoxynaphthalene was then treated with magnesium
turnings to afford the corresponding Grignard reagent, which was then reacted with di-
ethyl phosphite to obtain bis(2,7-dimethoxynaphthalen-1-yl)phosphine oxide 2a. Under a
catalytic system involving Pd(OAc)2 (10 mol%), dppp (20 mol%), and Cs2CO3 (2.0 equiv)
in toluene solution protected by argon gas, the reaction was completed at 120 ◦C in 16 h to
give (R)-N-(2-(bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-
sulfinamide (3a) in a complex mixture which is extremely difficult to purify. This crude prod-
uct was directly subjected to oxidation with m-CPBA in THF to afford the final chiral turbo
product, N-(2-(bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-
2-sulfonamide (4a), in a chemical yield of 80% for these two steps (an overall yield of 44%
from 2a) (Schemes 1–3).



Molecules 2025, 30, 603 4 of 24Molecules 2025, 30, x FOR PEER REVIEW 4 of 26 
 

 

Br O

tBu
S(R)

Br

CHO Ti(OEt)4

THF, 50 oCNH2
S

(R)
tBu

O
N LiAlH4

THF, 0 oC to rt

Br O

tBu
S (R)

N
H

+

S1 1a
 

Scheme 1. Synthesis of the building block 1a. 

CH3CN, rt
HO OH NBS HO OH

Br

DMF, rt

MeI, K2CO3 MeO OMe

Br

THF, 50 oC

Mg

THF, 0 oC to rt

EtO OEt
P
H

O

P
H

O

OMe

OMe

MeO

MeO

S2 S3

2a  

Scheme 2. Synthesis of the building block 2a. 

Br

HN +
Pd(OAc)2, dppp
Cs2CO3

PhMe, 120 oC

S
(R)

tBu O

m-CPBA

THF, rt
P
H

O

OMe

OMe

MeO

MeO

P

O

OMe

OMe

MeO

MeON
H

S

O

tBu

P

O

OMe

OMe

MeO

MeON
H

S
O

O
tBu

1a 2a 3a 4a  

Scheme 3. Assembly of the final turbo target. 

The absolute configuration of the resulting turbo chirality has been unambiguously 
determined by X-ray diffraction analysis (Figure 3). The (S)-2-methylpropane-2-sul-
fonimine auxiliary leads to the asymmetric formation of turbo chiral target (5a) in a P,P,P 
configuration, as clearly indicated by the arrangement of three aromatic rings. Interest-
ingly, a chiral nitrogen center is also observed in this linearly connected amino function-
ality which is anchored by the electron-withdrawing sulfonyl group (tBuSO2-). The lone-
pair electrons on nitrogen are directed between two S=O bonds equally. Surrounding the 
tetrahedron unit centered by phosphorus (black broken line in Figure 3), the more stereo-
chemically bulkier sides of the three aromatic rings are directed closer to the oxygen atom 
of P=O instead of in the opposite direction. The three bond angles of the Csp2(Ar)-P and 
P=O bonds are measured as 108.62° [Csp2(Ar1)], 113.34° [Csp2(Ar2)], and 107.06° [Ar3]. The 
differences in these bond angles lead to notable differences in the bond distances of the 
three Csp2(Ar)-P bonds, with values of 1.829 Å [Csp2(Ar1)], 1.825 Å [Csp2(Ar2)], and 1.822 
Å [Csp2(Ar3)]. Accordingly, the distances between the oxygen on the P=O bond and these 
three sp2 carbons are determined to be 2.698 Å [Csp2(Ar1)], 2.770 Å [Csp2(Ar2)], and 2.666 
Å [Csp2(Ar3)]. More importantly, the present turbo chiral framework clearly shows three 
dihedral angles of P=O with aromatic rings, with values of 48.70° [Csp2(Ar1)], 7.25° 

[Csp2(Ar2)], and 59.33° [Csp2(Ar3)]. 

Scheme 1. Synthesis of the building block 1a.

Molecules 2025, 30, x FOR PEER REVIEW 4 of 26 
 

 

Br O

tBu
S(R)

Br

CHO Ti(OEt)4

THF, 50 oCNH2
S

(R)
tBu

O
N LiAlH4

THF, 0 oC to rt

Br O

tBu
S (R)

N
H

+

S1 1a
 

Scheme 1. Synthesis of the building block 1a. 

CH3CN, rt
HO OH NBS HO OH

Br

DMF, rt

MeI, K2CO3 MeO OMe

Br

THF, 50 oC

Mg

THF, 0 oC to rt

EtO OEt
P
H

O

P
H

O

OMe

OMe

MeO

MeO

S2 S3

2a  

Scheme 2. Synthesis of the building block 2a. 

Br

HN +
Pd(OAc)2, dppp
Cs2CO3

PhMe, 120 oC

S
(R)

tBu O

m-CPBA

THF, rt
P
H

O

OMe

OMe

MeO

MeO

P

O

OMe

OMe

MeO

MeON
H

S

O

tBu

P

O

OMe

OMe

MeO

MeON
H

S
O

O
tBu

1a 2a 3a 4a  

Scheme 3. Assembly of the final turbo target. 

The absolute configuration of the resulting turbo chirality has been unambiguously 
determined by X-ray diffraction analysis (Figure 3). The (S)-2-methylpropane-2-sul-
fonimine auxiliary leads to the asymmetric formation of turbo chiral target (5a) in a P,P,P 
configuration, as clearly indicated by the arrangement of three aromatic rings. Interest-
ingly, a chiral nitrogen center is also observed in this linearly connected amino function-
ality which is anchored by the electron-withdrawing sulfonyl group (tBuSO2-). The lone-
pair electrons on nitrogen are directed between two S=O bonds equally. Surrounding the 
tetrahedron unit centered by phosphorus (black broken line in Figure 3), the more stereo-
chemically bulkier sides of the three aromatic rings are directed closer to the oxygen atom 
of P=O instead of in the opposite direction. The three bond angles of the Csp2(Ar)-P and 
P=O bonds are measured as 108.62° [Csp2(Ar1)], 113.34° [Csp2(Ar2)], and 107.06° [Ar3]. The 
differences in these bond angles lead to notable differences in the bond distances of the 
three Csp2(Ar)-P bonds, with values of 1.829 Å [Csp2(Ar1)], 1.825 Å [Csp2(Ar2)], and 1.822 
Å [Csp2(Ar3)]. Accordingly, the distances between the oxygen on the P=O bond and these 
three sp2 carbons are determined to be 2.698 Å [Csp2(Ar1)], 2.770 Å [Csp2(Ar2)], and 2.666 
Å [Csp2(Ar3)]. More importantly, the present turbo chiral framework clearly shows three 
dihedral angles of P=O with aromatic rings, with values of 48.70° [Csp2(Ar1)], 7.25° 

[Csp2(Ar2)], and 59.33° [Csp2(Ar3)]. 

Scheme 2. Synthesis of the building block 2a.

Molecules 2025, 30, x FOR PEER REVIEW 4 of 26 
 

 

Br O

tBu
S(R)

Br

CHO Ti(OEt)4

THF, 50 oCNH2
S

(R)
tBu

O
N LiAlH4

THF, 0 oC to rt

Br O

tBu
S (R)

N
H

+

S1 1a
 

Scheme 1. Synthesis of the building block 1a. 

CH3CN, rt
HO OH NBS HO OH

Br

DMF, rt

MeI, K2CO3 MeO OMe

Br

THF, 50 oC

Mg

THF, 0 oC to rt

EtO OEt
P
H

O

P
H

O

OMe

OMe

MeO

MeO

S2 S3

2a  

Scheme 2. Synthesis of the building block 2a. 

Br

HN +
Pd(OAc)2, dppp
Cs2CO3

PhMe, 120 oC

S
(R)

tBu O

m-CPBA

THF, rt
P
H

O

OMe

OMe

MeO

MeO

P

O

OMe

OMe

MeO

MeON
H

S

O

tBu

P

O

OMe

OMe

MeO

MeON
H

S
O

O
tBu

1a 2a 3a 4a  

Scheme 3. Assembly of the final turbo target. 

The absolute configuration of the resulting turbo chirality has been unambiguously 
determined by X-ray diffraction analysis (Figure 3). The (S)-2-methylpropane-2-sul-
fonimine auxiliary leads to the asymmetric formation of turbo chiral target (5a) in a P,P,P 
configuration, as clearly indicated by the arrangement of three aromatic rings. Interest-
ingly, a chiral nitrogen center is also observed in this linearly connected amino function-
ality which is anchored by the electron-withdrawing sulfonyl group (tBuSO2-). The lone-
pair electrons on nitrogen are directed between two S=O bonds equally. Surrounding the 
tetrahedron unit centered by phosphorus (black broken line in Figure 3), the more stereo-
chemically bulkier sides of the three aromatic rings are directed closer to the oxygen atom 
of P=O instead of in the opposite direction. The three bond angles of the Csp2(Ar)-P and 
P=O bonds are measured as 108.62° [Csp2(Ar1)], 113.34° [Csp2(Ar2)], and 107.06° [Ar3]. The 
differences in these bond angles lead to notable differences in the bond distances of the 
three Csp2(Ar)-P bonds, with values of 1.829 Å [Csp2(Ar1)], 1.825 Å [Csp2(Ar2)], and 1.822 
Å [Csp2(Ar3)]. Accordingly, the distances between the oxygen on the P=O bond and these 
three sp2 carbons are determined to be 2.698 Å [Csp2(Ar1)], 2.770 Å [Csp2(Ar2)], and 2.666 
Å [Csp2(Ar3)]. More importantly, the present turbo chiral framework clearly shows three 
dihedral angles of P=O with aromatic rings, with values of 48.70° [Csp2(Ar1)], 7.25° 

[Csp2(Ar2)], and 59.33° [Csp2(Ar3)]. 

Scheme 3. Assembly of the final turbo target.

The absolute configuration of the resulting turbo chirality has been unambiguously de-
termined by X-ray diffraction analysis (Figure 3). The (S)-2-methylpropane-2-sulfonimine
auxiliary leads to the asymmetric formation of turbo chiral target (5a) in a P,P,P config-
uration, as clearly indicated by the arrangement of three aromatic rings. Interestingly, a
chiral nitrogen center is also observed in this linearly connected amino functionality which
is anchored by the electron-withdrawing sulfonyl group (tBuSO2-). The lone-pair electrons
on nitrogen are directed between two S=O bonds equally. Surrounding the tetrahedron
unit centered by phosphorus (black broken line in Figure 3), the more stereochemically
bulkier sides of the three aromatic rings are directed closer to the oxygen atom of P=O
instead of in the opposite direction. The three bond angles of the Csp2(Ar)-P and P=O
bonds are measured as 108.62◦ [Csp2(Ar1)], 113.34◦ [Csp2(Ar2)], and 107.06◦ [Ar3]. The
differences in these bond angles lead to notable differences in the bond distances of the
three Csp2(Ar)-P bonds, with values of 1.829 Å [Csp2(Ar1)], 1.825 Å [Csp2(Ar2)], and
1.822 Å [Csp2(Ar3)]. Accordingly, the distances between the oxygen on the P=O bond and
these three sp2 carbons are determined to be 2.698 Å [Csp2(Ar1)], 2.770 Å [Csp2(Ar2)], and
2.666 Å [Csp2(Ar3)]. More importantly, the present turbo chiral framework clearly shows
three dihedral angles of P=O with aromatic rings, with values of 48.70◦ [Csp2(Ar1)], 7.25◦

[Csp2(Ar2)], and 59.33◦ [Csp2(Ar3)].
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With this fully characterized turbo framework (4a) on hand, we then expanded the de-
sign and asymmetric synthesis of a series of other turbo targets with both P,P,P and M,M,M
configurations (Figures 4 and 5). For P,P,P configuration target synthesis, alkoxy groups
on the 2,7-positions of the naphthalene ring were considered to enhance the steric effects
compared to the smallest MeO-group. This would help to increase the atropoisomeric
barriers of the three P-C(sp2) bonds, benefiting the stability of the turbo chiral compounds.
Obviously, at first, primary alkyl groups, such as Et, n-Pr, and n-Bu, should be employed to
replace the smallest Me counterpart. As shown in Figure 4, the corresponding products
were obtained in yields of 37%, 28%, and 34% for cases 4b, 4c, and 4d, respectively. Next,
secondary and tertiary alkyl groups, cyclopentyl (Cp), i-Pr, and i-Bu, were employed to
further increase the steric effect for the higher stability of the chiral turbo targets. Chemical
yields of 37%, 59%, and 33% were obtained for cases 4e, 4f, and 4g, respectively. For nearly
all of these cases except for case 4f, chemical yields are lower than that of MeO case (44%),
which may be caused by higher steric effects. The substrate scope was also examined for
(R)-N-(2-bromobenzyl)-2-methylpropane-2-sulfinamide by introducing various groups in
the phenyl ring. The methyl-substituted case (4h) gave almost an identical yield (41%) to
the initial case. The electron-withdrawing group of CF3 (4i) afforded a higher yield of 55%
than that of the initial case. Five strong electron-donating cases (4j, 4k–4m, and 4n) all
work well for the present asymmetric synthesis. Cases 4j and 4n gave the same chemical
yield of 32%, whereas the yields of cases 4k–4m were arranged from 40% to 55%.

For M,M,M configuration target synthesis, the opposite chiral auxiliary of (S)-N-(2-
bromobenzyl)-2-methylpropane-2-sulfinamide was utilized by varying alkoxy groups on
the 2,7-positions of the naphthalene ring. As shown in Figure 5, the four turbo targets cover
three types of alkyl groups, including primary (Me) and secondary (i-Pr, i-Bu, and Cp)
groups. Similar ranges of chemical yields to those of the P,P,P configuration cases were
obtained (31%, 52%, 37%, and 27% for case 5a, 5b, 5c, and 5d, respectively). Interestingly,
compared to the initial case of MeO, nearly all cases afforded lower chemical yields due to
the steric effect, as anticipated. However, three i-Pr cases all gave higher yields (52–59%)
which might be caused by the aggregation-induced factor [18,19] due to the existence of a
i-Pr group, benefiting products’ packing or aggregation. For all of the above-mentioned
synthesis, precursors 3’ were extremely difficult to isolate and purify due to the formation
of complex products. They were directly subjected to the oxidation step to afford the final
products, which can be more easily purified for the generation of good-quality crystals for
X-ray structural analysis.
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Computational Study

We conducted density functional theory (DFT) calculations for the turbo chirality based
on the computation methods discussed below to determine the minimum energy pathway
(MEP) connecting (a)-P,P,P (Enantiomer 1) and (a)-M,M,M (Enantiomer 2). Enantiomer
1 was obtained from the crystal structure. Enantiomer 2 was created as the mirror image
of Enantiomer 1 across the x-z plane, generating its mirror image. This reflected structure
was then superposed on Enantiomer 1 using the central S, N, and C atoms (Figure 6) as
reference atoms, which led to the M,M,M turbo chirality for the three substituent groups
of the phosphine oxide. These two initial structures were optimized using DFT with the
B3LYP functional [116–119], incorporating D3 dispersion corrections [120] and the def2-SVP
basis set [121] (B3LYP-D3/def2-SVP).
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brown, respectively.

The geodesic interpolation method was employed to generate an initial guess of the
MEP connecting the two optimized enantiomers. The initial path contained 20 images and
was subsequently optimized using the nudged elastic band (NEB) method while the two
endpoints were frozen. The climbing image from the NEB search served as an initial guess
for the more refined optimization of the transition state (TS) structures using the dimer
method [122]. Both NEB and dimer method calculations were performed using the B3LYP-
D3/def2-SVP approach. The Hessians at the optimized minima and TSs were evaluated
using the same quantum mechanical method, and normal mode analysis confirmed the
identities of the TSs and minima: each TS had a single imaginary-frequency mode, while
each minimum had none.

The energies of the previously optimized stationary points (two minima and one TS)
were recalculated at the B3LYP-D3/def2-TZVP level of theory. Zero-point energy (ZPE)
corrections, derived from normal mode analysis, were added to the B3LYP-D3/def2-TZVP
energies. All geometry optimizations, reaction pathway searches, and ZPE corrections were
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conducted using the TURBOMOLE [123] software package, which was interfaced with the
DL-FIND code [124] within the Chemshell software package [125].

Transition state theory (Equation (1)) was applied to estimate the reaction rate for the
interconversion between the two enantiomers:

kTST =
kBT

h
·e−β∆E, (1)

where ∆E is the free energy barrier, β equals 1/(kBT), kB is the Boltzmann’s constant, T is
the temperature (298.0 K), and h is the Planck constant.

Through geometry optimization and a reaction path search at the DFT level of theory,
we identified the structures of the minima corresponding to the two enantiomers ((a)-
M,M,M) and ((a)-P,P,P) and the transition state (TS) along their interconversion pathway
(Figure 6). The calculated energy barrier for the transition between the two enantiomers
is 26.38 kcal/mol. Obtained using transition state theory, the estimated rate for the tran-
sition is 2.78 × 10−7 s−1 at room temperature (298 K). The inverse of this rate, which
represents the lifetime of the reactant, is approximately 3.59 × 106 s (or about 41.6 days).
These results suggest that the high energy barrier can effectively kinetically stabilize each
enantiomer. The elevated energy of the TS is attributed to the steric repulsion between the
bulky t-butyl group and the two methoxy groups (Figure 6C), one from each of the two
naphthalene rings.

3. Materials and Methods
3.1. General Methods

Unless otherwise stated, all reactions used magnetically stirred mixtures and were
conducted in oven-dried glassware in anhydrous solvents under Ar, applying standard
Schlenk techniques. Solvents and liquid reagents, as well as solutions of solid or liquid
reagents, were added via syringes and stainless steel or polyethylene cannulas through
rubber septa or through a weak Ar counter-flow. Solvents were removed under reduced
pressure at 40–65 ◦C using a rotavapor. All given yields are the isolated yields of chromato-
graphically and NMR spectroscopically assessed materials. All commercially available
chemicals were used as received without further purification.

1H and 13C NMR spectra were recorded in CDCl3 on 400 MHz instruments with TMS
as an internal standard. For the referencing of the 1H NMR spectra, the residual solvent
signal (δ = 7.26 ppm for CDCl3) was used. In the case of the 13C NMR spectra, the signal
of the solvent (δ = 77.0 ppm for CDCl3) was used. Chemical shifts (δ) were reported in
ppm with respect to TMS. Data are represented as follows: chemical shift, multiplicity
(s = singlet; d = doublet; t = triplet; m = multiplet), coupling constant (J, Hz), and inte-
gration. Optical rotations were measured with a Rudolph Research Analytical APIV/2W
Polarimeter (Hackettstown, NJ, USA) at the indicated temperature with a sodium lamp.
Measurements were performed in a 2 mL vessel with a concentration unit of g/100 mL in
the corresponding solvents.

3.2. Chemical Synthesis
3.2.1. General Procedure A for the Synthesis of Sulfonamides 1a, 1a’, 1b, 1c, and 1h

Substrate 1 was prepared according to the reported procedures and the related litera-
ture [126,127]. Titanium tetraethoxide (2.22 g, 2.0 equiv, 10 mmol) was slowly added to a
solution of (R)-tert-butanesulfinamide (0.61 g, 1.0 equiv, 5 mmol) and 2-bromobenzaldehyde
(1.0 equiv, 5 mmol) in dry THF (20 mL) at 50 ◦C. After finishing (noticed by using TLC),
1 mL of saturated aq was added to the reaction mixture. The NaHCO3 solution and precipi-
tated product were collected by filtration and washed thoroughly with ethyl acetate. The
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filtrate was concentrated under reduced pressure and used without further purification in
the next step.

The resulting crude aldimine was then dissolved in THF (0.20 M). After the solution
was cooled to 0 ºC with an ice bath, a solution of LiAlH4 (2.5 mL, 0.5 equiv, 2.5 mmol)
in THF (1.0 M) was added dropwise, and the reaction mixture was allowed to warm to
room temperature. After being stirred for 10 min and monitored by TLC, the reaction
was quenched with a saturated solution of NH4Cl (20 mL) and extracted with EtOAc
(2 × 20 mL). The combined organic layers were washed with brine, dried over MgSO4, and
filtered. The residue was purified after concentration on silica gel (n-hexane/EA = 3:1) to
obtain the pure sulfonamide 1.

(R)-N-(2-Bromobenzyl)-2-methylpropane-2-sulfinamide (1a). General procedure A was em-
ployed, and the product was purified by silica gel (200–300 mesh) column chromatography
using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1a as a white solid. 1H
NMR (400 MHz, CDCl3): δ 7.56 (dd, J = 7.9, 1.3 Hz, 1H), 7.42 (dd, J = 7.6, 1.7 Hz, 1H), 7.30
(td, J = 7.5, 1.3 Hz, 1H), 7.16 (td, J = 7.6, 1.8 Hz, 1H), 4.50–4.29 (m, 2H), 3.64 (t, J = 6.6 Hz,
1H), 1.23 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 137.9, 133.0, 130.2, 129.3, 127.6,
123.9, 56.1, 49.7, 22.6 ppm. HRMS (ESI): m/z calcd. for C11H16BrNOS [M + Na]+ 312.0029,
found 312.0040.

(S)-N-(2-Bromobenzyl)-2-methylpropane-2-sulfinamide (1a’). General procedure A was em-
ployed using (S)-tert-butanesulfinamide, which was purified by silica gel (200–300 mesh)
column chromatography using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain
1a’ as a white solid. 1H NMR (400 MHz, CDCl3): δ 7.56 (dd, J = 7.9, 1.2 Hz, 1H), 7.42 (dd,
J = 7.6, 1.7 Hz, 1H), 7.30 (td, J = 7.5, 1.3 Hz, 1H), 7.16 (td, J = 7.7, 1.7 Hz, 1H), 4.49–4.30 (m,
2H), 3.64 (t, J = 6.4 Hz, 1H), 1.23 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 137.9, 133.0,
130.2, 129.3, 127.7, 123.9, 56.1, 49.8, 22.6 ppm. HRMS (ESI): m/z calcd. for C11H16BrNOS
[M + H]+ 290.0209, found 290.0211.

(R)-N-(2-Bromo-5-methylbenzyl)-2-methylpropane-2-sulfinamide (1b). General procedure A was
employed, and the product was purified by silica gel (200–300 mesh) column chromatogra-
phy using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1b as a white solid.
1H NMR (400 MHz, CDCl3): δ 7.42 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 2.3 Hz, 1H), 7.00–6.92
(m, 1H), 4.43–4.25 (m, 2H), 3.63 (t, J = 6.4 Hz, 1H), 2.31 (s, 3H), 1.23 (s, 9H) ppm; 13C NMR
(101 MHz, CDCl3): δ 137.6, 137.4, 132.7, 131.1, 130.0, 120.5, 56.0, 49.7, 22.6, 20.8 ppm. HRMS
(ESI): m/z calcd. for C12H18BrNOS [M + Na]+ 326.0185, found 326.0184.

(R)-N-(2-Bromo-5-(trifluoromethyl)benzyl)-2-methylpropane-2-sulfinamide (1c). General proce-
dure A was employed, and the product was purified by silica gel (200–300 mesh) column
chromatography using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1c as a
white solid. 1H NMR (400 MHz, CDCl3): δ 7.72–7.68 (m, 2H), 7.42 (dd, J = 8.5, 2.1 Hz, 1H),
4.53–4.36 (m, 2H), 3.70 (t, J = 6.6 Hz, 1H), 1.26 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ

139.1, 133.5, 130.3, 130.0, 127.5, 126.6 (q, J = 4.0 Hz), 125.8 (q, J = 3.7 Hz), 125.0, 122.3, 56.3,
49.1, 22.5 ppm; 19F NMR (376 MHz, CDCl3) δ −62.8 ppm. HRMS (ESI): m/z calcd. for
C12H15BrF3NOS [M + Na]+ 379.9903, found 379.9898.

(R)-N-(2-Bromo-5-methoxybenzyl)-2-methylpropane-2-sulfinamide (1d). General procedure
A was employed, and the product was purified by silica gel (200–300 mesh) column
chromatography using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1d as
a white solid. 1H NMR (400 MHz, CDCl3): δ 7.43 (d, J = 8.7 Hz, 1H), 7.00 (d, J = 3.0 Hz,
1H), 6.72 (dd, J = 8.7, 3.0 Hz, 1H), 4.44–4.26 (m, 2H), 3.79 (s, 3H), 3.68 (t, J = 6.6 Hz, 1H),
1.24 (s, 9H). ppm; 13C NMR (101 MHz, CDCl3): δ 159.1, 138.8, 133.5, 115.8, 114.8, 113.9,
56.1, 55.5, 49.8, 22.6 ppm. HRMS (ESI): m/z calcd. for C12H18BrNO2S [M + Na]+ 342.0134,
found 324.0135.
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(R)-N-((6-Bromobenzo[d][1,3]dioxol-5-yl)methyl)-2-methylpropane-2-sulfinamide (1h). General
procedure A was employed, and the product was purified by silica gel (200–300 mesh)
column chromatography using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain
1h as a white solid. 1H NMR (400 MHz, CDCl3): δ 7.00 (s, 1H), 6.90 (s, 1H), 5.97 (q,
J = 1.4 Hz, 2H), 4.39–4.19 (m, 2H), 3.63–3.56 (m, 1H), 1.23 (s, 9H) ppm; 13C NMR (101 MHz,
CDCl3): δ 147.9, 147.5, 131.0, 114.3, 112.9, 110.0, 101.8, 56.0, 49.6, 22.6 ppm. HRMS (ESI):
m/z calcd. for C12H16BrNO3S [M + H]+ 334.0108, found 334.0104.

3.2.2. General Procedure B for the Synthesis of Sulfonamides 1e–1g

According to the reported procedures and the related literature [128], to a solution
of 2-bromo-5-hydroxybenzaldehyde (2.01 g, 10 mmol, 1.0 equiv) in DMF (30 mL) were
added alkyl bromide (15 mmol, 1.5 equiv) and K2CO3 (2.77 g, 20 mmol, 2.0 equiv) at room
temperature. The reaction mixture was stirred at 50 ◦C for 4 h. The solution was diluted
with water (100 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layer
was washed with water (3 × 20 mL) and dried over MgSO4. After filtration, the solvent
was removed and the crude product was used without further purification in the next step.

Titanium tetraethoxide (2.22 g, 2.0 equiv, 10 mmol) was slowly added to a solution of
tert-butanesulfinamide (0.61 g, 1.0 equiv, 5 mmol) and 2-bromobenzaldehyde (1.0 equiv,
5 mmol) in dry THF (20 mL) at 50 ◦C. After finishing (noticed by using TLC), 1 mL of
saturated aq was added to the reaction mixture. The NaHCO3 solution and precipitated
product were collected by filtration and washed thoroughly with EtOAc. The filtrate was
concentrated under reduced pressure and used without further purification in the next step.

The resulting crude aldimine was then dissolved in THF (0.20 M). After the solution
was cooled to 0 ºC with an ice bath, a solution of LiAlH4 (2.5 mL, 0.5 equiv, 2.5 mmol)
in THF (1.0 M) was added dropwise, and the reaction mixture was allowed to warm to
room temperature. After being stirred for 10 min and monitored by TLC, the reaction
was quenched with a saturated solution of NH4Cl (20 mL) and extracted with EtOAc
(2 × 20 mL). The combined organic layers were washed with brine, dried over MgSO4, and
filtered. The residue was purified after concentration on silica gel (n-hexane/EA = 3:1) to
obtain pure sulfonamide 1.

(R)-N-(2-Bromo-5-ethoxybenzyl)-2-methylpropane-2-sulfinamide (1e). General procedure B was
employed, and the product was purified by silica gel (200–300 mesh) column chromatogra-
phy using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1e as a white solid.
1H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 8.8 Hz, 1H), 6.98 (d, J = 3.0 Hz, 1H), 6.70 (dd,
J = 8.7, 3.0 Hz, 1H), 4.42–4.24 (m, 2H), 4.00 (q, J = 7.0 Hz, 2H), 3.66 (t, J = 6.6 Hz, 1H), 1.40 (t,
J = 7.0 Hz, 3H), 1.24 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 158.4, 138.7, 133.4, 116.3,
115.4, 113.7, 63.7, 56.1, 49.8, 22.6, 14.6 ppm. HRMS (ESI): m/z calcd. for C13H20BrNO2S
[M + Na]+ 356.0291, found 356.0284.

(R)-N-(2-bromo-5-propoxybenzyl)-2-methylpropane-2-sulfinamide (1f). General procedure B was
employed, and the product was purified by silica gel (200–300 mesh) column chromatogra-
phy using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1f as a white solid. 1H
NMR (400 MHz, CDCl3): δ 7.41 (d, J = 8.7 Hz, 1H), 6.98 (d, J = 3.0 Hz, 1H), 6.70 (dd, J = 8.7,
3.0 Hz, 1H), 4.39 (dd, J = 14.5, 5.7 Hz, 1H), 4.27 (dd, J = 14.5, 7.5 Hz, 1H), 3.89 (t, J = 6.5 Hz,
2H), 3.72–3.62 (m, 1H), 1.84–1.75 (m, 2H), 1.24 (s, 9H), 1.03 (t, J = 7.4 Hz, 3H) ppm; 13C
NMR (101 MHz, CDCl3): δ 158.6, 138.7, 133.4, 116.4, 115.4, 113.6, 69.8, 56.1, 49.8, 22.6, 22.4,
10.4 ppm. HRMS (ESI): m/z calcd. for C14H22BrNO2S [M + Na]+ 370.0447, found 370.0454.

(R)-N-(2-bromo-5-isopropoxybenzyl)-2-methylpropane-2-sulfinamide (1g). General procedure
B was employed, and the product was purified by silica gel (200–300 mesh) column
chromatography using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 1g as a
white solid. 1H NMR (400 MHz, CDCl3): δ 7.40 (d, J = 8.7 Hz, 1H), 6.97 (d, J = 3.0 Hz, 1H),
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6.69 (dd, J = 8.7, 3.0 Hz, 1H), 4.51 (hept, J = 6.0 Hz, 1H), 4.42–4.23 (m, 2H), 3.72–3.63 (m,
1H), 1.32 (d, J = 6.0 Hz, 6H), 1.24 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 157.4, 138.7,
133.5, 117.6, 116.6, 113.5, 70.3, 56.1, 49.8, 22.6, 21.9, 21.8 ppm. HRMS (ESI): m/z calcd. for
C14H22BrNO2S [M + Na]+ 370.0447, found 370.0443.

3.2.3. General Procedure for the Synthesis of Phosphine Oxides 2

Substrates 2 were prepared according to the reported procedures and the related
literature [129,130]. To a solution of 2,7-dihydroxynaphthalene (3.21 g, 20 mmol, 1.0 equiv)
in MeCN (50 mL) was added NBS (3.92 g, 22 mmol, 1.1 equiv). After being stirred for 8 h at
room temperature, the reaction mixture was diluted with EtOAc, and the organic material
was extracted with EtOAc. The combined organic layers were washed with brine and dried
over MgSO4. After filtration, the filtrate was concentrated under reduced pressure. The
residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 4/1) to
provide 1-bromonaphthalene-2,7-diol.

To a solution of 1-bromonaphthalene-2,7-diol (2.39 g, 10 mmol, 1.0 equiv) in DMF
(30 mL) were added alkyl bromide (40 mmol, 4.0 equiv) and K2CO3 (5.53 g, 40 mmol,
4.0 equiv) at room temperature. The reaction mixture was stirred at 40 ◦C for 8 h. The
solution was diluted with water (100 mL) and extracted with EtOAc (3 × 30 mL). The
combined organic layer was washed with water (3 × 20 mL) and dried over MgSO4.
After filtration, the solvent was removed by evaporation, and the resulting mixture was
purified by column chromatography on silica gel (n-hexane) to afford the corresponding
bromo-aryl ether.

Under an argon atmosphere, a dried flask with a reflux condenser was charged with
magnesium turnings (0.79 g, 33 mmol, 3.3 equiv) and THF (5 mL). Then, a solution of the
corresponding bromo-aryl ether (30 mol, 3.0 equiv) in 20 mL of THF was added dropwise,
and the Grignard reagent formation was started by heating at 60 ◦C. After the reaction had
started, the reaction mixture was maintained for 2 h at 60 ◦C. Under an argon atmosphere,
a second dried flask was charged with NaH (60% in mineral oil, 0.48 g, 12 mmol, 1.2 equiv)
and THF. Then, this mixture was cooled in an ice bath, and at 0 ◦C, diethyl phosphite
(1.38 g, 10 mmol, 1.0 equiv) was added dropwise over 15 min. Afterward, the reaction
mixture was stirred for 30 min at 0 ◦C, and then, the freshly prepared Grignard reagent was
added dropwise. After addition, the mixture was stirred for 16 h at room temperature and
then quenched with a saturated aqueous NH4Cl solution. The aqueous layer was extracted
with EtOAc (3 × 20 mL), and the combined organic layers were dried over MgSO4 and
filtered. The residue was purified after concentration on silica gel (n-hexane/EA) to obtain
pure phosphine oxide 2.

Bis(2,7-dimethoxynaphthalen-1-yl)phosphine oxide (2a). The general procedure was employed,
and the product was purified by silica gel (200–300 mesh) column chromatography using
petroleum ether/ethyl acetate (1:1 v/v) as eluent to obtain 2a as a white solid. 1H NMR
(400 MHz, CDCl3): δ 9.96 (s, 0.5H), 8.62 (s, 0.5H), 8.44 (d, J = 2.4 Hz, 2H), 7.82 (d, J = 9.0 Hz,
2H), 7.63 (dd, J = 9.0, 1.6 Hz, 2H), 6.99–6.95 (m, 4H), 3.66 (s, 6H), 3.62 (s, 6H) ppm; 13C NMR
(101 MHz, CDCl3): δ 160.5 (d, J = 2.8 Hz), 159.1, 137.0 (d, J = 5.5 Hz), 134.2 (d, J = 2.1 Hz),
129.9, 124.5 (d, J = 9.4 Hz), 117.1, 113.2, 112.1, 109.8 (d, J = 6.6 Hz), 103.2 (d, J = 6.8 Hz), 58.2,
56.3, 55.1, 18.3 ppm; 31P NMR (162 MHz, CDCl3) δ 5.1 ppm. HRMS (ESI): m/z calcd. for
C24H23O5P [M + Na]+ 445.1176, found 445.1177.

Bis(2,7-diethoxynaphthalen-1-yl)phosphine oxide (2b). The general procedure was employed,
and the product was purified by silica gel (200–300 mesh) column chromatography using
petroleum ether/ethyl acetate (1:1 v/v) as eluent to obtain 2b as a white solid. 1H NMR
(400 MHz, CDCl3): δ 9.95 (s, 0.5H), 8.60 (s, 0.5H), 8.42 (d, J = 2.5 Hz, 2H), 7.80 (d, J = 9.0 Hz,
2H), 7.62 (dd, J = 9.0, 1.6 Hz, 2H), 6.97 (d, J = 2.4 Hz, 1H), 6.96–6.93 (m, 2H), 6.92 (d,
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J = 5.1 Hz, 1H), 4.08–4.00 (m, 2H), 3.95–3.83 (m, 4H), 3.56–3.48 (m, 2H), 1.26 (t, J = 7.0 Hz,
6H), 1.11 (t, J = 7.0 Hz, 6H) ppm; 13C NMR (101 MHz, CDCl3): δ 159.7 (d, J = 2.9 Hz),
158.4, 137.2 (d, J = 5.6 Hz), 134.0 (d, J = 1.9 Hz), 129.8, 124.4 (d, J = 9.5 Hz), 117.3, 112.6 (d,
J = 105.1 Hz), 110.3 (d, J = 6.7 Hz), 103.9 (d, J = 6.5 Hz), 64.8, 63.4, 14.5, 14.3 ppm; 31P NMR
(162 MHz, CDCl3) δ 6.1 ppm. HRMS (ESI): m/z calcd. for C28H31O5P [M + H]+ 479.1892,
found 479.1983.

Bis(2,7-dipropoxynaphthalen-1-yl)phosphine oxide (2c). The general procedure was employed,
and the product was purified by silica gel (200–300 mesh) column chromatography using
petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 2c as a white solid. 1H NMR
(400 MHz, CDCl3): δ 9.94 (s, 0.5H), 8.59 (s, 0.5H), 8.40 (s, 2H), 7.80 (d, J = 9.0 Hz, 2H),
7.62 (d, J = 8.9 Hz, 2H), 6.99–6.91 (m, 4H), 3.98–3.92 (m, 2H), 3.87–3.81 (m, 2H), 3.76–3.70
(m, 2H), 3.35–3.30 (m, 2H), 1.70–1.61 (m, 4H), 1.61–1.52 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H),
0.86 (t, J = 7.4 Hz, 6H) ppm; 13C NMR (101 MHz, CDCl3): δ 159.9 (d, J = 2.9 Hz), 158.6,
137.2 (d, J = 5.5 Hz), 134.0, 129.8, 124.4 (d, J = 9.4 Hz), 117.4, 112.6 (d, J = 104.8 Hz), 110.2
(d, J = 6.8 Hz), 103.8 (d, J = 6.5 Hz), 70.8, 69.3, 22.44, 22.37, 10.5, 10.4 ppm; 31P NMR (162
MHz, CDCl3) δ 5.9 ppm. HRMS (ESI): m/z calcd. for C32H39O5P [M + Na]+ 557.2428,
found 557.2415.

Bis(2,7-dibutoxynaphthalen-1-yl)phosphine oxide (2d). The general procedure was employed,
and the product was purified by silica gel (200–300 mesh) column chromatography using
petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 2d as a white solid. 1H NMR
(400 MHz, CDCl3): δ 9.90 (s, 0.5H), 8.55 (s, 0.5H), 8.37 (s, 2H), 7.81 (d, J = 8.9 Hz, 2H), 7.61
(dd, J = 8.9, 1.5 Hz, 2H), 6.95–6.93 (m, 4H), 4.01–3.95 (m, 2H), 3.90–3.84 (m, 2H), 3.79–3.74
(m, 2H), 3.41–3.35 (m, 2H), 1.64–1.57 (m, 4H), 1.52–1.45 (m, 4H), 1.40–1.34 (m, 4H), 1.29–1.23
(m, 4H), 0.90 (t, J = 7.4 Hz, 6H), 0.84 (t, J = 7.3 Hz, 6H) ppm; 13C NMR (101 MHz, CDCl3):
δ 159.9 (d, J = 2.9 Hz), 158.7, 137.2 (d, J = 5.6 Hz), 134.0 (d, J = 2.0 Hz), 129.8, 124.4 (d,
J = 9.4 Hz), 117.4, 112.5 (d, J = 105.1 Hz), 110.1 (d, J = 6.6 Hz), 103.7 (d, J = 6.4 Hz), 69.0, 67.4,
31.2, 31.1, 19.13, 19.11, 13.79, 13.75 ppm; 31P NMR (162 MHz, CDCl3) δ 6.0 ppm. HRMS
(ESI): m/z calcd. for C36H47O5P [M + H]+ 591.3234, found 591.3205.

Bis(2,7-diisopropoxynaphthalen-1-yl)phosphine oxide (2e). The general procedure was em-
ployed, and the product was purified by silica gel (200–300 mesh) column chromatography
using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 2e as a white solid. 1H
NMR (400 MHz, CDCl3): δ 9.88 (s, 0.5H), 8.53 (s, 0.5H), 8.44 (s, 2H), 7.78 (d, J = 9.0 Hz, 2H),
7.61 (dd, J = 9.0, 1.6 Hz, 2H), 6.96–6.91 (m, 4H), 4.61 (p, J = 6.1 Hz, 2H), 4.26 (p, J = 6.5 Hz,
2H), 1.26 (d, J = 6.0 Hz, 6H), 1.13 (d, J = 6.1 Hz, 6H), 1.04 (d, J = 6.0 Hz, 6H), 0.89 (d,
J = 6.1 Hz, 6H). ppm; 13C NMR (101 MHz, CDCl3): δ 158.7 (d, J = 3.0 Hz), 157.3, 137.4 (d,
J = 5.8 Hz), 133.7 (d, J = 1.9 Hz), 129.8, 124.2 (d, J = 9.4 Hz), 118.1, 113.3 (d, J = 105.7 Hz), 111.0
(d, J = 6.7 Hz), 104.7 (d, J = 6.6 Hz), 71.0, 69.5, 21.6, 21.5 ppm; 31P NMR (162 MHz, CDCl3) δ

6.0 ppm. HRMS (ESI): m/z calcd. for C32H39O5P [M + H]+ 535.2608, found 535.2604.

Bis(2,7-diisobutoxynaphthalen-1-yl)phosphine oxide (2f). The general procedure was employed,
and the product was purified by silica gel (200–300 mesh) column chromatography using
petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 2f as a white solid. 1H NMR
(400 MHz, CDCl3): δ 9.91 (s, 0.5H), 8.55 (s, 0.5H), 8.35 (s, 2H), 7.81 (d, J = 8.9 Hz, 2H), 7.61
(dd, J = 9.0, 1.6 Hz, 2H), 6.98–6.93 (m, 4H), 3.76 (dd, J = 8.8, 6.5 Hz, 2H), 3.66 (dd, J = 8.8,
6.3 Hz, 2H), 3.52 (dd, J = 9.0, 6.2 Hz, 2H), 3.17–2.98 (m, 2H), 1.95–1.82 (m, 4H), 0.91–0.87 (m,
18H), 0.84 (d, J = 6.7 Hz, 6H) ppm; 13C NMR (101 MHz, CDCl3): δ 13C NMR (101 MHz,
CDCl3) δ 160.0 (d, J = 3.0 Hz), 158.8, 137.1, 134.1 (d, J = 1.8 Hz), 129.7, 124.3 (d, J = 9.4 Hz),
117.6, 113.0, 110.1 (d, J = 6.6 Hz), 103.6 (d, J = 6.3 Hz), 75.69, 73.91, 28.27, 28.21, 19.24, 19.21,
19.15, 19.11 ppm; 31P NMR (162 MHz, CDCl3) δ 5.8 ppm. HRMS (ESI): m/z calcd. for
C36H47O5P [M + H]+ 591.3234, found 591.3175.
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Bis(2,7-bis(cyclopentyloxy)naphthalen-1-yl)phosphine oxide (2g). The general procedure was
employed, and the product was purified by silica gel (200–300 mesh) column chromatogra-
phy using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain 2g as a white solid.
1H NMR (400 MHz, CDCl3): δ 9.72 (s, 0.5H), 8.64–8.11 (m, 2H + 0.5H), 7.79 (d, J = 8.9 Hz,
2H), 7.60 (d, J = 8.9 Hz, 2H), 6.96 (dd, J = 9.1, 5.0 Hz, 2H), 6.90 (dd, J = 8.8, 2.4 Hz, 2H),
4.80 (t, J = 6.0 Hz, 2H), 4.42 (s, 2H), 1.87–1.63 (m, 16H), 1.54–1.21 (m, 16H) ppm; 13C NMR
(101 MHz, CDCl3): δ 158.9 (d, J = 2.9 Hz), 157.6, 133.7 (d, J = 1.9 Hz), 129.7, 124.1 (d,
J = 9.5 Hz), 117.9, 110.7 (d, J = 6.9 Hz), 105.0 (d, J = 6.7 Hz), 80.4, 79.0, 32.74, 32.67, 32.60,
32.56, 24.1, 23.88, 23.85 ppm; 31P NMR (162 MHz, CDCl3) δ 6.9 ppm. HRMS (ESI): m/z
calcd. for C40H47O5P [M + Na]+ 661.3054, found 661.3039.

3.3. General Procedure for the Synthesis of Products 4 and 5

To a 10 mL Schlenk tube were added sulfonamide 1 (0.12 mmol, 1.2 equiv), phosphine
oxide 2 (0.1 mmol, 1.0 equiv), Pd(OAc)2 (2.2 mg, 10 mol%), dppp (8.2 mg, 20 mol%),
Cs2CO3 (65.2 mg, 0.2 mmol, 2.0 equiv), and toluene (2 mL). The mixture was stirred at
120 ◦C for 24 h under argon. After cooling to room temperature, 3 mL H2O was added to the
mixture and extracted with EtOAc. The combined organic layers were dried over MgSO4

and filtered. After prep TLC, the crude product 3 was dissolved in THF, and m-CPBA
(0.15 mmol, 1.5 equiv) was subsequently added at room temperature. After being stirred
for 20 min and monitored by TLC, the reaction was quenched with a saturated solution
of NaHSO3 (5 mL) and extracted with EtOAc. The combined organic layers were washed
with brine, dried over MgSO4, and filtered. The residue was purified after concentration
on silica gel (n-hexane/EA = 2:1) to obtain the desired product 4. And the products of the
opposite configuration 5 were obtained by the same procedure.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (4a).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4a as a white solid (28.5 mg, 44% yield). mp: 115–117 ◦C; [α]25

D = 1.8
(c = 0.1, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.66 (s, 1H), 8.33 (s, 1H), 7.87 (dd, J = 15.5,
8.9 Hz, 2H), 7.68 (d, J = 9.0 Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.30
(dd, J = 15.5, 7.7 Hz, 1H), 7.19–7.14 (m, 2H), 7.04–6.96 (m, 2H), 6.95–6.88 (m, 2H), 4.61 (dd,
J = 13.8, 3.9 Hz, 1H), 4.38 (dd, J = 13.9, 8.8 Hz, 1H), 3.69 (s, 3H), 3.34 (s, 3H), 3.30 (s, 3H),
3.13 (s, 3H), 1.30 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 161.1, 159.2, 158.8, 158.5, 143.0
(d, J = 8.3 Hz), 137.7 (d, J = 6.1 Hz), 136.7 (d, J = 5.9 Hz), 136.4, 135.4, 134.9, 133.9, 132.2 (d,
J = 13.6 Hz), 131.7 (d, J = 10.3 Hz), 131.1 (d, J = 2.9 Hz), 129.9, 129.6, 126.5 (d, J = 13.7 Hz),
125.0 (t, J = 11.7 Hz), 117.2 (d, J = 22.2 Hz), 115.7 (d, J = 107.8 Hz), 112.3 (d, J = 105.4 Hz),
110.7 (d, J = 6.9 Hz), 109.9 (d, J = 7.7 Hz), 105.3, 104.5 (d, J = 5.9 Hz), 59.5, 55.9, 55.4, 55.3,
54.8, 48.0 (d, J = 5.5 Hz), 24.3 ppm; 31P NMR (162 MHz, CDCl3) δ 33.7 ppm. HRMS (ESI):
m/z calcd. for C35H38NO7PS [M + Na]+ 670.1999, found 670.1989.

N-(2-(Bis(2,7-diethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (4b).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4b as a white solid (26.1 mg, 37% yield). mp: 124–126 ◦C; [α]25

D = 0.9
(c = 0.1, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.80 (d, J = 2.4 Hz, 1H), 8.18 (d, J = 2.4 Hz,
1H), 7.83 (dd, J = 15.5, 9.0 Hz, 2H), 7.66 (dd, J = 8.9, 1.7 Hz, 1H), 7.61–7.56 (m, 2H), 7.43–7.38
(m, 1H), 7.38–7.31 (m, 1H), 7.18–7.09 (m, 2H), 7.02 (dd, J = 8.9, 2.4 Hz, 1H), 6.94 (dd, J = 8.9,
5.3 Hz, 1H), 6.91–6.86 (m, 2H), 4.60 (dd, J = 13.9, 4.1 Hz, 1H), 4.39 (dd, J = 13.8, 8.7 Hz, 1H),
4.09–4.02 (m, 1H), 3.90–3.82 (m, 2H), 3.78–3.70 (m, 2H), 3.61–3.47 (m, 2H), 3.13–3.05 (m, 1H),
1.34 (t, J = 7.0 Hz, 3H), 1.30 (s, 9H), 1.07 (t, J = 7.0 Hz, 3H), 0.66 (t, J = 7.0 Hz, 3H), 0.55 (t,
J = 7.0 Hz, 3H) ppm; 13C NMR (101 MHz, CDCl3): δ 13C NMR (101 MHz, CDCl3) δ 159.7
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(d, J = 2.9 Hz), 158.4, 137.8, 137.2 (d, J = 5.5 Hz), 134.0, 133.0, 130.2, 129.8, 129.3, 127.6, 124.3
(d, J = 9.3 Hz), 123.9, 117.3, 112.6 (d, J = 104.3 Hz), 110.3 (d, J = 6.6 Hz), 103.8 (d, J = 6.6 Hz),
64.8, 63.3, 56.1, 49.7, 22.6, 14.5, 14.3 ppm; 31P NMR (162 MHz, CDCl3) δ 33.8 ppm. HRMS
(ESI): m/z calcd. for C39H46NO7PS [M + Na]+ 726.2625, found 726.2578.

N-(2-(bis(2,7-dipropoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (4c).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4c as a white solid (21.2 mg, 28% yield). mp: 128–130 ◦C; [α]25

D = −1.8
(c = 0.1, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.80 (s, 1H), 8.14 (s, 1H), 7.82 (dd, J = 13.3,
9.0 Hz, 2H), 7.66 (d, J = 8.9 Hz, 1H), 7.58 (d, J = 9.2 Hz, 2H), 7.44–7.30 (m, 2H), 7.11 (t,
J = 7.9 Hz, 2H), 7.02 (d, J = 7.9 Hz, 1H), 6.96 (dd, J = 9.0, 5.2 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H),
4.59 (dd, J = 13.7, 4.2 Hz, 1H), 4.39 (dd, J = 13.8, 8.4 Hz, 1H), 3.98–3.89 (m, 1H), 3.80–3.69 (m,
2H), 3.63–3.54 (m, 2H), 3.51–3.44 (m, 1H), 3.35–3.26 (m, 1H), 2.94–2.84 (m, 1H), 1.79–1.68 (m,
4H), 1.53–1.45 (m, 2H), 1.30 (s, 9H), 1.00–0.93 (m, 5H), 0.78 (t, J = 7.4 Hz, 3H), 0.61 (t, J = 7.4
Hz, 3H), 0.49 (t, J = 7.5 Hz, 3H) ppm; 13C NMR (101 MHz, CDCl3): δ 160.4, 158.8, 158.4,
157.9, 143.2 (d, J = 8.1 Hz), 138.0 (d, J = 6.2 Hz), 136.8 (d, J = 6.5 Hz), 135.8, 134.6, 133.7,
132.7 (d, J = 13.7 Hz), 132.0 (d, J = 10.3 Hz), 131.0, 129.7, 129.5, 126.4 (d, J = 13.5 Hz), 124.8,
124.7 (d, J = 5.9 Hz), 124.6, 117.4, 117.1, 115.1 (d, J = 109.4 Hz), 110.5 (d, J = 7.4 Hz), 109.9
(d, J = 7.9 Hz), 106.0, 105.3 (d, J = 6.3 Hz), 70.4, 70.2, 69.4, 69.0, 59.5, 48.1, 24.3, 22.33, 22.26,
21.64, 21.57, 10.6, 10.3, 9.9 ppm; 31P NMR (162 MHz, CDCl3) δ 33.6 ppm. HRMS (ESI): m/z
calcd. for C43H54NO7PS [M + H]+ 760.3432, found 760.3391.

N-(2-(Bis(2,7-dibutoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (4d).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4d as a white solid (27.7 mg, 34% yield). mp: 136–138 ◦C; [α]25

D = −0.6
(c = 0.3, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.74 (d, J = 2.4 Hz, 1H), 8.19 (d, J = 2.4 Hz,
1H), 7.82 (dd, J = 12.2, 9.0 Hz, 2H), 7.65 (dd, J = 9.0, 1.7 Hz, 1H), 7.61–7.55 (m, 2H), 7.40
(t, J = 7.5 Hz, 1H), 7.33 (dd, J = 15.4, 7.8 Hz, 1H), 7.15–7.07 (m, 2H), 7.01 (dd, J = 8.9,
2.4 Hz, 1H), 6.96 (dd, J = 9.0, 5.2 Hz, 1H), 6.91–6.85 (m, 2H), 4.57 (dd, J = 13.7, 4.2 Hz,
1H), 4.38 (dd, J = 13.7, 8.4 Hz, 1H), 3.98–3.91 (m, 1H), 3.80–3.72 (m, 2H), 3.68–3.60 (m, 2H),
3.55–3.49 (m, 1H), 3.40–3.34 (m, 1H), 3.02–2.94 (m, 1H), 1.75–1.61 (m, 4H), 1.48–1.41 (m,
4H), 1.29 (s, 9H), 1.26–1.21 (m, 2H), 1.06–0.96 (m, 3H), 0.92 (t, J = 7.3 Hz, 3H), 0.89–0.86
(m, 3H), 0.82 (t, J = 7.4 Hz, 3H), 0.73 (t, J = 7.0 Hz, 3H), 0.60 (t, J = 7.1 Hz, 3H) ppm;
13C NMR (101 MHz, CDCl3): δ 160.4, 158.8, 158.4, 157.9, 143.2 (d, J = 8.5 Hz), 137.9 (d,
J = 6.3 Hz), 136.9 (d, J = 6.6 Hz), 134.6, 133.6, 132.7 (d, J = 13.4 Hz), 132.1 (d, J = 10.2 Hz),
131.0, 129.7, 129.4, 126.3 (d, J = 13.4 Hz), 124.7 (t, J = 9.9 Hz), 117.4, 117.1, 114.6, 110.5
(d, J = 7.4 Hz), 109.9 (d, J = 8.1 Hz), 106.0, 105.3, 68.7, 68.4, 67.6, 67.2, 59.5, 48.1, 31.1 (d,
J = 2.8 Hz), 30.4 (d, J = 5.9 Hz), 24.4, 19.3, 19.0, 18.7, 13.8 (d, J = 6.2 Hz), 13.7, 13.5 ppm; 31P
NMR (162 MHz, CDCl3) δ 34.4 ppm. HRMS (ESI): m/z calcd. for C47H62NO7PS [M + H]+

816.4058, found 816.4097.

N-(2-(Bis(2,7-bis(cyclopentyloxy)naphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide
(4e). The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4e as a white solid (31.9 mg, 37% yield). mp: 144–146 ◦C; [α]25

D = 0.45
(c = 0.4, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.57 (d, J = 2.4 Hz, 1H), 8.13 (d, J = 2.3 Hz,
1H), 7.80 (dd, J = 12.1, 9.0 Hz, 2H), 7.62 (dd, J = 9.0, 1.7 Hz, 1H), 7.58–7.54 (m, 2H), 7.39–7.30
(m, 2H), 7.24 (dd, J = 8.6, 4.0 Hz, 1H), 7.11–7.06 (m, 1H), 6.95–6.91 (m, 2H), 6.88 (dd, J = 9.0,
4.9 Hz, 1H), 6.84 (dd, J = 8.9, 2.4 Hz, 1H), 4.74–4.69 (m, 1H), 4.60–4.50 (m, 3H), 4.34 (dd,
J = 13.6, 8.7 Hz, 1H), 3.96–3.91 (m, 1H), 2.03–1.96 (m, 1H), 1.85–1.46 (m, 18H), 1.40–1.33 (m,
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5H), 1.31 (s, 9H), 1.22–0.92 (m, 6H), 0.80–0.66 (m, 2H) ppm; 13C NMR (101 MHz, CDCl3): δ

159.5, 158.0 (d, J = 3.0 Hz), 157.2, 156.8, 143.1 (d, J = 7.2 Hz), 137.8 (d, J = 6.2 Hz), 137.0 (d,
J = 6.4 Hz), 136.9, 135.9, 134.2, 133.3, 133.1, 132.2 (d, J = 10.4 Hz), 130.9, 129.5 (d, J = 16.9 Hz),
126.3 (d, J = 13.4 Hz), 124.4, 124.2 (d, J = 6.9 Hz), 124.1, 117.8, 117.4, 114.7 (d, J = 109.7 Hz),
111.5 (d, J = 105.1 Hz), 110.7 (d, J = 7.5 Hz), 110.5 (d, J = 8.0 Hz), 107.7 (d, J = 4.5 Hz),
106.8 (d, J = 6.6 Hz), 79.7 (d, J = 15.6 Hz), 79.4, 78.8, 59.7, 48.5 (d, J = 5.3 Hz), 32.9, 32.7,
32.5, 32.2 (d, J = 2.4 Hz), 32.0, 31.7 (d, J = 5.5 Hz), 24.4, 24.3, 24.0 (d, J = 3.6 Hz), 23.9 (d,
J = 3.6 Hz), 23.8 ppm; 31P NMR (162 MHz, CDCl3) δ 32.8 ppm. HRMS (ESI): m/z calcd. for
C51H62NO7PS [M + Na]+ 886.3877, found 886.3941.

N-(2-(Bis(2,7-diisopropoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (4f).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4f as a white solid (44.8 mg, 59% yield). mp: 96–98 ◦C; [α]25

D = −1.36
(c = 0.5, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.71 (d, J = 2.4 Hz, 1H), 8.10 (d, J = 2.3 Hz,
1H), 7.80 (t, J = 9.8 Hz, 2H), 7.65–7.60 (m, 2H), 7.56 (dd, J = 8.9, 1.7 Hz, 1H), 7.43–7.30 (m,
3H), 7.14–7.07 (m, 1H), 6.97 (dd, J = 8.9, 2.4 Hz, 1H), 6.92–6.85 (m, 2H), 6.82 (dd, J = 8.9,
2.4 Hz, 1H), 4.63 (dd, J = 13.5, 3.4 Hz, 1H), 4.54 (p, J = 6.0 Hz, 1H), 4.44 (p, J = 6.3 Hz, 2H),
4.33 (dd, J = 13.5, 9.3 Hz, 1H), 3.76 (p, J = 6.0 Hz, 1H), 1.37 (d, J = 6.0 Hz, 3H), 1.31 (s, 9H),
1.11 (d, J = 6.0 Hz, 3H), 1.06 (d, J = 6.0 Hz, 3H), 0.97 (d, J = 5.9 Hz, 3H), 0.83 (d, J = 6.1 Hz,
3H), 0.71 (d, J = 6.0 Hz, 3H), 0.59 (d, J = 6.1 Hz, 3H), 0.24 (d, J = 6.0 Hz, 3H) ppm; 13C
NMR (101 MHz, CDCl3): δ 159.0 (d, J = 2.6 Hz), 157.1 (d, J = 3.0 Hz), 156.9, 156.5, 143.2 (d,
J = 8.3 Hz), 138.1 (d, J = 6.2 Hz), 137.1 (d, J = 6.3 Hz), 136.1, 134.4, 133.3 (d, J = 2.2 Hz), 133.0
(d, J = 14.0 Hz), 132.2 (d, J = 10.3 Hz), 131.1 (d, J = 2.9 Hz), 129.5 (d, J = 20.4 Hz), 126.6 (d,
J = 13.7 Hz), 124.4 (d, J = 9.6 Hz), 124.2 (d, J = 9.8 Hz), 117.8, 117.5, 115.3 (d, J = 109.8 Hz),
111.6 (d, J = 105.3 Hz), 110.1 (d, J = 7.5 Hz), 109.7 (d, J = 7.9 Hz), 107.2 (d, J = 4.5 Hz), 106.8
(d, J = 6.7 Hz), 69.8, 69.3 (d, J = 2.7 Hz), 68.7, 59.6, 48.7 (d, J = 5.4 Hz), 24.4, 21.8, 21.6 (d,
J = 6.3 Hz), 21.3, 21.1 (d, J = 3.7 Hz), 20.8, 20.0 ppm; 31P NMR (162 MHz, CDCl3) δ 33.4 ppm.
HRMS (ESI): m/z calcd. for C43H54NO7PS [M + H]+ 760.3432, found 760.3312.

N-(2-(Bis(2,7-diisobutoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (4g).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 4g as a white solid (26.9 mg, 33% yield). mp: 92–94 ◦C; [α]25

D = 0.36
(c = 0.5, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.69 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 2.4 Hz,
1H), 7.82 (t, J = 8.6 Hz, 2H), 7.65 (dd, J = 9.0, 1.7 Hz, 1H), 7.61–7.56 (m, 2H), 7.42–7.30 (m,
2H), 7.15–7.05 (m, 2H), 7.02 (dd, J = 8.9, 2.4 Hz, 1H), 6.97 (dd, J = 9.0, 5.2 Hz, 1H), 6.92–6.86
(m, 2H), 4.53 (dd, J = 13.6, 4.8 Hz, 1H), 4.37 (dd, J = 13.7, 7.9 Hz, 1H), 3.68 (dd, J = 9.3,
6.4 Hz, 1H), 3.55–3.47 (m, 2H), 3.40–3.25 (m, 3H), 3.01 (dd, J = 9.7, 6.7 Hz, 1H), 2.72 (dd,
J = 9.1, 6.5 Hz, 1H), 2.02–1.93 (m, 1H), 1.82–1.77 (m, 1H), 1.30 (s, 9H), 1.24–1.18 (m, 1H),
0.96 (dd, J = 6.7, 4.7 Hz, 6H), 0.78 (dd, J = 8.0, 6.7 Hz, 6H), 0.68 (d, J = 6.7 Hz, 3H), 0.52 (d,
J = 6.6 Hz, 3H), 0.48 (d, J = 6.6 Hz, 3H), 0.37 (d, J = 6.7 Hz, 3H) ppm; 13C NMR (101 MHz,
CDCl3): δ 160.7, 159.2 (d, J = 2.7 Hz), 158.6, 158.1, 143.2 (d, J = 8.3 Hz), 137.7 (d, J = 6.4 Hz),
136.9 (d, J = 6.7 Hz), 135.8, 134.6, 133.7, 132.9 (d, J = 13.5 Hz), 132.2 (d, J = 10.2 Hz), 131.1,
129.7, 129.4, 126.4 (d, J = 13.6 Hz), 124.8 (t, J = 9.7 Hz), 117.6, 117.1, 115.0 (d, J = 109.7 Hz),
111.1 (d, J = 7.3 Hz), 110.5 (d, J = 7.8 Hz), 106.2 (d, J = 4.5 Hz), 105.4 (d, J = 6.3 Hz), 76.0,
75.9, 74.0, 73.7, 59.5, 48.1 (d, J = 5.5 Hz), 28.2, 28.0, 27.8, 27.6, 24.4, 19.3 (d, J = 24.4 Hz), 19.1
(d, J = 1.9 Hz), 19.0, 18.7 ppm; 31P NMR (162 MHz, CDCl3) δ 33.1 ppm. HRMS (ESI): m/z
calcd. for C47H62NO7PS [M + H]+ 816.4058, found 816.4100.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)-5-methylbenzyl)-2-methylpropane-2-sulfonamide
(4h). The general procedure was employed, and the product was purified by silica gel
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(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v) as
eluent to obtain 4h as a white solid (27.1 mg, 41% yield). mp: 135–137 ◦C; [α]25

D = 0.9 (c = 0.2,
CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.64 (s, 1H), 8.32 (s, 1H), 7.86 (dd, J = 14.8, 8.5 Hz,
2H), 7.67 (d, J = 9.3 Hz, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.44 (d, J = 2.7 Hz, 1H), 7.22–7.14 (m,
2H), 7.03–6.89 (m, 5H), 4.57 (dd, J = 13.8, 4.0 Hz, 1H), 4.33 (dd, J = 13.7, 8.7 Hz, 1H), 3.69 (s,
3H), 3.35 (s, 3H), 3.29 (s, 3H), 3.12 (s, 3H), 2.35 (s, 3H), 1.30 (s, 9H) ppm; 13C NMR (101 MHz,
CDCl3): δ 160.5, 159.1, 137.6, 137.4, 137.06 (d, J = 5.5 Hz), 134.2 (d, J = 1.9 Hz), 132.7, 131.1,
130.1, 130.0, 124.6 (d, J = 9.4 Hz), 120.5, 117.2, 113.3, 112.3, 109.8 (d, J = 6.5 Hz), 103.3 (d,
J = 6.9 Hz), 56.3, 56.1, 55.2, 49.7, 22.6, 20.9 ppm; 31P NMR (162 MHz, CDCl3) δ 33.5 ppm.
HRMS (ESI): m/z calcd. for C36H40NO7PS [M + Na]+ 684.2156, found 684.2166.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)-5-(trifluoromethyl)benzyl)-2-methylpropane-
2-sulfonamide (4i). The general procedure was employed, and the product was purified by
silica gel (200–300 mesh) column chromatography using petroleum ether/ethyl acetate
(2:1 v/v) as eluent to obtain 4i as a white solid (39.4 mg, 55% yield). mp: 163–165 ◦C;
[α]25

D = −0.18 (c = 1.0, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.77 (s, 1H), 8.12 (s, 1H),
7.93–7.85 (m, 3H), 7.70 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.45–7.39 (m, 2H),
7.10–7.03 (m, 2H), 6.99 (dd, J = 9.0, 5.4 Hz, 1H), 6.95–6.88 (m, 2H), 4.69 (dd, J = 14.0, 3.9 Hz,
1H), 4.49–4.41 (m, 1H), 3.75 (s, 3H), 3.37 (s, 3H), 3.22 (s, 3H), 3.14 (s, 3H), 1.30 (s, 9H) ppm;
13C NMR (101 MHz, CDCl3): δ 161.1, 159.2, 159.0, 158.7, 144.0 (d, J = 8.8 Hz), 140.7, 139.6,
137.8, 136.4, 135.5, 134.3, 133.3, 132.8, 132.4 (d, J = 14.4 Hz), 130.0 (d, J = 31.5 Hz), 129.7,
128.2 (q, JC-F = 3.4 Hz), 127.8, 125.0, 123.2, 122.3, 117.4 (d, J = 21.2 Hz), 110.0 (d, J = 85.6 Hz),
104.6 (d, J = 70.6 Hz), 104.0, 75.6, 68.6, 59.7, 55.7, 55.3, 54.7, 47.5 (d, J = 4.5 Hz), 24.2 ppm;
19F NMR (376 MHz, CDCl3) δ –62.5 ppm; 31P NMR (162 MHz, CDCl3) δ 33.2 ppm. HRMS
(ESI): m/z calcd. for C36H37F3NO7PS [M + Na]+ 738.1873, found 738.1860.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)-5-methoxybenzyl)-2-methylpropane-2-sulfonamide
(4j). The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v) as
eluent to obtain 4j as a white solid (21.7 mg, 32% yield). mp: 121–123 ◦C; [α]25

D = 0.9 (c = 0.2,
CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.66 (s, 1H), 8.26 (s, 1H), 7.86 (dd, J = 14.6, 8.9 Hz,
2H), 7.68 (d, J = 9.0 Hz, 1H), 7.60 (d, J = 8.9 Hz, 1H), 7.25–7.18 (m, 2H), 7.11 (t, J = 6.5 Hz,
1H), 7.04–6.97 (m, 2H), 6.91 (d, J = 8.3 Hz, 2H), 6.70–6.63 (m, 1H), 4.62 (dd, J = 14.4, 4.1 Hz,
1H), 4.35 (dd, J = 14.2, 8.8 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 3.38 (s, 3H), 3.27 (s, 3H), 3.11
(s, 3H), 1.31 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 160.5 (d, J = 2.8 Hz), 159.1, 138.8,
137.0 (d, J = 5.5 Hz), 134.2 (d, J = 2.0 Hz), 133.5, 123.0, 124.6 (d, J = 9.4 Hz), 117.1, 115.8,
114.8, 113.9, 112.7 (d, J = 104.7 Hz), 109.8 (d, J = 6.7 Hz), 103.3 (d, J = 6.8 Hz), 56.3, 56.1, 55.5,
55.2, 49.8, 22.6 ppm; 31P NMR (162 MHz, CDCl3) δ 32.9 ppm. HRMS (ESI): m/z calcd. for
C36H40NO8PS [M + Na]+ 700.2105, found 700.2100.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)-5-ethoxybenzyl)-2-methylpropane-2-sulfonamide
(4k). The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v) as
eluent to obtain 4k as a white solid (27.7 mg, 40% yield). mp: 125–127 ◦C; [α]25

D = 1.8 (c = 0.1,
CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.66 (s, 1H), 8.32 (s, 1H), 7.89–7.82 (m, 2H), 7.68
(d, J = 8.9 Hz, 1H), 7.60 (d, J = 8.9 Hz, 1H), 7.23–7.16 (m, 3H), 7.04–6.97 (m, 2H), 6.91 (d,
J = 8.2 Hz, 2H), 6.64 (d, J = 8.7 Hz, 1H), 4.58 (dd, J = 14.0, 3.9 Hz, 1H), 4.32 (dd, J = 13.9,
8.7 Hz, 1H), 4.10–4.02 (m, 2H), 3.72 (s, 3H), 3.38 (s, 3H), 3.29 (s, 3H), 3.11 (s, 3H), 1.40 (t,
J = 7.0 Hz, 3H), 1.31 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 160.5, 159.1, 158.5, 138.7,
137.0, 134.2, 133.5, 130.0, 124.6 (d, J = 9.6 Hz), 117.2, 116.4, 115.4, 113.7, 109.9 (d, J = 6.7 Hz),
103.3 (d, J = 6.8 Hz), 63.8, 56.3, 56.1, 55.2, 49.9, 22.6, 14.7 ppm; 31P NMR (162 MHz, CDCl3)
δ 34.5 ppm. HRMS (ESI): m/z calcd. for C37H42NO8PS [M + H]+ 692.2442, found 692.2423.
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N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)-5-propoxybenzyl)-2-methylpropane-2-sulfonamide
(4l). The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v) as
eluent to obtain 4l as a white solid (33.2 mg, 47% yield). mp: 146–148 ◦C; [α]25

D = 1.8 (c = 0.1,
CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.65 (s, 1H), 8.32 (s, 1H), 7.85 (dd, J = 14.5, 8.9 Hz,
2H), 7.67 (d, J = 9.2 Hz, 1H), 7.60 (d, J = 8.9 Hz, 1H), 7.24–7.14 (m, 3H), 7.05–6.96 (m, 2H),
6.90 (dd, J = 9.0, 4.9 Hz, 2H), 6.65 (dt, J = 8.6, 2.3 Hz, 1H), 4.59 (dd, J = 13.8, 3.9 Hz, 1H),
4.36–4.30 (m, 1H), 3.99–3.91 (m, 2H), 3.72 (s, 3H), 3.38 (s, 3H), 3.29 (s, 3H), 3.11 (s, 3H),
1.82–1.76 (m, 2H), 1.31 (s, 9H), 1.02 (t, J = 7.4 Hz, 3H) ppm; 13C NMR (101 MHz, CDCl3):
δ 160.5 (d, J = 3.0 Hz), 159.1, 158.7, 138.7, 137.1 (d, J = 5.6 Hz), 134.2 (d, J = 2.0 Hz), 133.5,
130.0, 124.6 (d, J = 9.2 Hz), 117.2, 116.4, 115.4, 113.7, 113.3, 112.3, 109.8 (d, J = 6.6 Hz), 103.3
(d, J = 6.7 Hz), 69.8, 56.3, 56.1, 55.2, 49.8, 22.6, 22.5, 10.4 ppm; 31P NMR (162 MHz, CDCl3) δ

32.8 ppm. HRMS (ESI): m/z calcd. for C38H44NO8PS [M + Na]+ 728.2418, found 728.2407.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)-5-isopropoxybenzyl)-2-methylpropane-2-
sulfonamide (4m). The general procedure was employed, and the product was purified by
silica gel (200–300 mesh) column chromatography using petroleum ether/ethyl acetate
(2:1 v/v) as eluent to obtain 4m as a white solid (38.8 mg, 55% yield). mp: 115–117 ◦C;
[α]25

D = 0.18 (c = 0.1, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.63 (s, 1H), 8.36 (s, 1H), 7.86
(dd, J = 14.3, 9.0 Hz, 2H), 7.67 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 9.0 Hz, 1H), 7.23–7.14 (m, 3H),
7.04–6.97 (m, 2H), 6.91 (dd, J = 9.1, 4.7 Hz, 2H), 6.63 (d, J = 8.5 Hz, 1H), 4.65–4.55 (m, 2H),
4.34–4.28 (m, 1H), 3.71 (s, 3H), 3.38 (s, 3H), 3.31 (s, 3H), 3.12 (s, 3H), 1.35–1.30 (m, 15H) ppm;
13C NMR (101 MHz, CDCl3): δ 160.7 (d, J = 3.0 Hz), 159.3, 157.4, 156.8, 151.1, 138.5, 137.0
(d, J = 5.3 Hz), 134.6, 134.1, 133.6, 130.0 (d, J = 20.4 Hz), 128.9, 124.6 (d, J = 9.5 Hz), 124.4,
117.7, 117.3, 116.8, 116.3, 114.1, 113.7, 111.8 (d, J = 106.6 Hz), 109.7 (d, J = 6.7 Hz), 107.9,
104.5, 103.1 (d, J = 7.0 Hz), 70.3, 56.3 (d, J = 3.1 Hz), 55.2, 49.9, 29.5, 22.7, 21.9 (d, J = 3.6 Hz)
ppm; 31P NMR (162 MHz, CDCl3) δ 34.5 ppm. HRMS (ESI): m/z calcd. for C38H44NO8PS
[M + Na]+ 728.2418, found 728.2407.

N-((6-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzo[d][1,3]dioxol-5-yl)methyl)-2-
methylpropane-2-sulfonamide (4n). The general procedure was employed, and the prod-
uct was purified by silica gel (200–300 mesh) column chromatography using petroleum
ether/ethyl acetate (2:1 v/v) as eluent to obtain 4n as a white solid (22.1 mg, 32% yield).
mp: 101–103 ◦C; [α]25

D = 0.45 (c = 0.2, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.72 (s, 1H),
8.20 (s, 1H), 7.86 (dd, J = 13.7, 8.8 Hz, 2H), 7.68 (d, J = 9.0 Hz, 1H), 7.60 (d, J = 8.9 Hz, 1H),
7.21–6.84 (m, 6H), 6.76 (d, J = 15.1 Hz, 1H), 5.93 (d, J = 20.9 Hz, 2H), 4.57 (d, J = 14.0 Hz, 1H),
4.31–4.25 (m, 1H), 3.78 (s, 3H), 3.45 (s, 3H), 3.24 (s, 3H), 3.11 (s, 3H), 1.31 (s, 9H) ppm; 13C
NMR (101 MHz, CDCl3): δ 160.9, 159.2, 159.0, 158.5, 149.5, 146.3, 146.1, 139.1 (d, J = 9.1 Hz),
134.9, 133.8, 129.8 (d, J = 32.6 Hz), 128.8, 125.1 (d, J = 10.0 Hz), 117.3 (d, J = 24.3 Hz), 112.4,
112.3 (d, J = 7.1 Hz), 112.1, 110.8, 110.0, 105.2, 104.7, 101.4, 59.6, 55.8 (d, J = 21.2 Hz), 55.4,
54.8, 47.8, 29.7, 24.3, 22.7, 14.1 ppm; 31P NMR (162 MHz, CDCl3) δ 33.0 ppm. HRMS (ESI):
m/z calcd. for C36H38NO9PS [M + Na]+ 714.1898, found 714.1900.

N-(2-(Bis(2,7-dimethoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (5a).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 5a as a white solid (20.1 mg, 31% yield). mp: 97–99 ◦C; [α]25

D = −1.8
(c = 0.3, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.65 (s, 1H), 8.29 (s, 1H), 7.87 (dd, J = 15.6,
8.9 Hz, 2H), 7.70–7.59 (m, 3H), 7.45–7.40 (m, 1H), 7.33–7.26 (m, 1H), 7.19–7.14 (m, 1H), 7.09
(dd, J = 8.2, 4.6 Hz, 1H), 7.04–6.96 (m, 2H), 6.92 (dd, J = 9.0, 2.9 Hz, 2H), 4.62 (dd, J = 14.0,
3.9 Hz, 1H), 4.39 (dd, J = 14.0, 8.8 Hz, 1H), 3.69 (s, 3H), 3.34 (s, 3H), 3.30 (s, 3H), 3.13 (s,
3H), 1.30 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ 161.1, 159.2, 158.9, 158.6, 143.1 (d,
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J = 8.5 Hz), 137.7, 136.7 (d, J = 7.2 Hz), 136.4, 135.3, 134.9, 133.9, 132.9, 132.2 (d, J = 13.9 Hz),
131.7 (d, J = 10.4 Hz), 131.2 (d, J = 2.9 Hz), 129.8 (d, J = 27.2 Hz), 126.6 (d, J = 13.7 Hz),
125.0, 117.2 (d, J = 21.7 Hz), 110.3 (d, J = 88.9 Hz), 105.0 (d, J = 75.8 Hz), 59.6, 55.9, 55.4 (d,
J = 10.5 Hz), 54.8, 47.9 (d, J = 5.5 Hz), 24.31 ppm; 31P NMR (162 MHz, CDCl3) δ 33.9 ppm.
HRMS (ESI): m/z calcd. for C35H38NO7PS [M + Na]+ 670.1999, found 670.2007.

N-(2-(Bis(2,7-diisopropoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (5b).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 5b as a white solid (39.5 mg, 52% yield). mp: 112–114 ◦C; [α]25

D = −2.1
(c = 0.5, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.74 (s, 1H), 8.08 (s, 1H), 7.81 (t, J = 10.2 Hz,
2H), 7.65–7.54 (m, 3H), 7.42–7.31 (m, 4H), 7.15–7.09 (m, 1H), 6.98–6.79 (m, 4H), 4.63 (dd,
J = 13.5, 4.2 Hz, 1H), 4.57–4.51 (m, 1H), 4.49–4.41 (m, 2H), 4.36–4.29 (m, 1H), 3.78–3.70 (m,
1H), 1.37 (t, J = 5.0 Hz, 3H), 1.31 (s, 9H), 1.12 (t, J = 4.5 Hz, 3H), 1.05 (t, J = 4.5 Hz, 3H), 0.97
(t, J = 5.0 Hz, 3H), 0.83 (t, J = 4.6 Hz, 3H), 0.70 (t, J = 5.0 Hz, 3H), 0.58 (t, J = 5.1 Hz, 3H),
0.23 (t, J = 5.1 Hz, 3H) ppm; 13C NMR (101 MHz, CDCl3): δ 158.8, 157.0, 156.7, 156.3, 143.0
(d, J = 8.1 Hz), 138.0 (d, J = 6.2 Hz), 137.1, 137.0 (d, J = 6.6 Hz), 136.0, 134.3, 133.2, 132.8 (d,
J = 13.9 Hz), 132.0 (d, J = 10.4 Hz), 130.9, 129.4 (d, J = 22.0 Hz), 128.5, 127.6, 127.45, 126.5
(d, J = 13.9 Hz), 124.3 (d, J = 9.5 Hz), 124.0 (d, J = 9.6 Hz), 117.6, 117.4, 115.6, 114.5, 111.9,
110.8, 110.0 (d, J = 7.5 Hz), 109.6 (d, J = 8.0 Hz), 107.1, 106.7 (d, J = 6.8 Hz), 69.6, 69.2 (d,
J = 5.3 Hz), 68.6, 59.4, 48.6 (d, J = 5.5 Hz), 48.2, 39.9 (q, J = 21.3 Hz), 24.2, 21.6 (d, J = 10.7
Hz), 21.4, 21.1, 20.9 (d, J = 4.7 Hz), 20.6, 19.8 ppm; 31P NMR (162 MHz, CDCl3) δ 33.3 ppm.
HRMS (ESI): m/z calcd. for C39H36N2O2S [M + Na]+ 619.2390, found 619.2397.

N-(2-(Bis(2,7-diisobutoxynaphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide (5c).
The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v)
as eluent to obtain 5c as a white solid (30.2 mg, 37% yield). mp: 133–135 ◦C; [α]25

D = −0.45
(c = 0.3, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.68 (s, 1H), 8.15 (s, 1H), 7.82 (t, J = 8.7 Hz,
2H), 7.65 (dd, J = 9.0, 1.7 Hz, 1H), 7.60–7.56 (m, 2H), 7.41–7.31 (m, 2H), 7.15–7.04 (m, 2H),
7.02 (dd, J = 8.9, 2.4 Hz, 1H), 6.97 (dd, J = 9.0, 5.2 Hz, 1H), 6.92–6.87 (m, 2H), 4.55–4.34 (m,
2H), 3.68 (dd, J = 9.3, 6.4 Hz, 1H), 3.55–3.46 (m, 2H), 3.39–3.26 (m, 3H), 3.01 (dd, J = 9.7,
6.7 Hz, 1H), 2.72 (dd, J = 9.1, 6.5 Hz, 1H), 2.02–1.93 (m, 1H), 1.85–1.75 (m, 2H), 1.30 (s, 9H),
1.24–1.17 (m, 1H), 0.96 (dd, J = 6.7, 4.7 Hz, 6H), 0.80–0.75 (m, 6H), 0.68 (d, J = 6.7 Hz, 3H),
0.50 (dd, J = 14.7, 6.6 Hz, 6H), 0.37 (d, J = 6.6 Hz, 3H) ppm; 13C NMR (101 MHz, CDCl3):
δ 160.7, 159.2, 158.6, 158.1, 143.3, 137.7, 136.9 (d, J = 4.3 Hz), 135.8, 134.6, 133.7, 132.9 (d,
J = 13.5 Hz), 132.2 (d, J = 10.2 Hz), 131.1, 129.6 (d, J = 27.8 Hz), 126.4 (d, J = 13.4 Hz), 124.8 (t,
J = 9.6 Hz), 117.6, 117.2, 114.5, 111.2, 110.5 (d, J = 7.6 Hz), 106.2, 105.4, 76.0, 75.9, 74.1, 73.7,
59.6, 48.1, 28.2, 28.0, 27.8, 27.7, 24.4, 19.3 (t, J = 4.2 Hz), 19.1 (d, J = 2.1 Hz), 19.0, 18.7 ppm; 31P
NMR (162 MHz, CDCl3) δ 34.8 ppm. HRMS (ESI): m/z calcd. for C47H62NO7PS [M + Na]+

838.3877, found 838.3854.

N-(2-(Bis(2,7-bis(cyclopentyloxy)naphthalen-1-yl)phosphoryl)benzyl)-2-methylpropane-2-sulfonamide
(5d). The general procedure was employed, and the product was purified by silica gel
(200–300 mesh) column chromatography using petroleum ether/ethyl acetate (2:1 v/v) as
eluent to obtain 5d as a white solid (23.3 mg, 27% yield). mp: 165–167 ◦C; [α]25

D = −0.6
(c = 0.3, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ 8.56 (s, 1H), 8.12 (s, 1H), 7.80 (dd, J = 12.4,
9.0 Hz, 2H), 7.62 (d, J = 7.3 Hz, 1H), 7.59–7.54 (m, 2H), 7.39–7.30 (m, 2H), 7.21 (dd, J = 8.8,
4.2 Hz, 1H), 7.12–7.06 (m, 1H), 6.96–6.83 (m, 4H), 4.75–4.69 (m, 1H), 4.60–4.51 (m, 3H), 4.34
(dd, J = 13.6, 8.7 Hz, 1H), 3.96–3.91 (m, 1H), 2.03–1.96 (m, 1H), 1.85–1.46 (m, 19H), 1.32–1.28
(m, 9H + 4H), 1.20–0.92 (m, 6H), 0.80–0.67 (m, 2H) ppm; 13C NMR (101 MHz, CDCl3): δ

159.5, 158.0 (d, J = 3.0 Hz), 157.2, 156.8, 143.1 (d, J = 8.1 Hz), 137.8 (d, J = 6.3 Hz), 134.2,
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133.3, 133.1, 132.2 (d, J = 10.3 Hz), 130.9, 129.5 (d, J = 16.8 Hz), 126.3 (d, J = 13.6 Hz), 124.3 (d,
J = 16.9 Hz), 124.2 (d, J = 16.9 Hz), 117.8, 117.4, 114.1, 110.6 (dd, J = 15.2, 7.6 Hz), 107.7, 106.8
(d, J = 6.7 Hz), 79.8, 79.6, 79.4, 78.9, 59.7, 48.5, 32.8 (d, J = 19.0 Hz), 32.5, 32.2 (d, J = 2.4 Hz),
32.0, 31.7 (d, J = 4.6 Hz), 24.4, 24.3, 24.0 (d, J = 3.7 Hz), 23.9 (d, J = 3.5 Hz), 23.8 ppm; 31P
NMR (162 MHz, CDCl3) δ 32.8 ppm. HRMS (ESI): m/z calcd. for C51H62NO7PS [M + Na]+

886.3877, found 886.3839.

4. Summary
We have successfully designed and synthesized chiral targets that exclusively feature

the element of turbo chirality. The chirality is effectively controlled using a sulfonimine
auxiliary through catalytic P–C(sp2) bond formation, followed by oxidation. The resulting
configurations and conformations were unambiguously confirmed via X-ray diffraction
analysis. The three propeller-like structures of the turbo frameworks are covalently linked
to the phosphorus center of the P=O bond, displaying either a clockwise (PPP) or counter-
clockwise (MMM) molecular arrangement. Notably, for each of the three propellers, the
bulkier part of the aromatic planes is directed toward the oxygen of the P=O bond, rather
than away from it. Computational studies were performed to examine the relative energies
of the rotational barriers along the P=O axis, as well as the transition pathway between the
two enantiomers, aligning with our theoretical expectations. This work is poised to have a
significant impact across chemical, biomedical, and material sciences in the future.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules30030603/s1, General synthesis of turbo chiral tar-
gets, precursors and analytical data, 1H NMR spectra, 13C NMR spectra, and X-ray diffraction
analysis data.
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